
Lecture 8

Lossy Media, Lorentz Force Law,
Drude-Lorentz-Sommerfeld
Model

In the previous lecture, we see the power of phasor technique or the frequency domain analysis.
The analysis of a frequency dispersive medium where ε is frequency dependent, is similar to
that of free space or vacuum. The two problems are mathematically homomorphic to each
other. In this lecture, we will generalize to the case where ε becomes a complex number, called
the complex permittivity. Using phasor technique, this way of solving Maxwell’s equations is
still homomorphic to that of solving Maxwell’s equations in free space. The analysis is greatly
simplified as a result!

8.1 Plane Waves in Lossy Conductive Media

Previously, we have derived the plane wave solution for a lossless homogeneous medium.
Since the algebra of complex numbers is similar to that of real numbers,the derivation can
be generalized to a conductive medium by invoking mathematical homomorphism. In other
words, in a conductive, one only needs to replace the permittivity with a complex permittivity,
as repeated here. When conductive loss is present, σ 6= 0, and J = σE. Then generalized
Ampere’s law becomes

∇×H = jωεE + σE = jω

(
ε+

σ

jω

)
E (8.1.1)

A complex permittivity can be defined as ε˜= ε− j σω . Eq. (8.1.1) can be rewritten as

∇×H = jωε˜E (8.1.2)
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This equation is of the same form as source-free Ampere’s law in the frequency domain for a
lossless medium where ε is completely real. Using the same method as before, a wave solution

E = E0e
−jk·r (8.1.3)

will have the dispersion relation which is now given by

k2
x + k2

y + k2
z = ω2µε˜ (8.1.4)

Since ε˜ is complex now, kx, ky, and kz cannot be all real. Equation (8.1.4) has been derived
previously by assuming that k is a real vector. When k = k′− jk′′ is a complex vector, some
of the previous derivations for real k vector may not be correct here for complex k vector. It
is also difficult to visualize a complex k vector that is suppose to indicate the direciton with
which the wave is propagating. Here, the wave can decay and oscillate in different directions.

So again, for physical insight, we look at the simplified case where

E = x̂Ex(z) (8.1.5)

so that ∇ · E = ∂xEx(z) = 0, and let k = ẑk = ẑω
√
µε˜. This wave is constant in the xy

plane, and hence, is a plane wave. Furthermore, in this manner, we are requiring that the
wave decays and propagates (or oscillates) only in the z direction. For such a simple plane
wave,

E = x̂Ex(z) = x̂E0e
−jkz (8.1.6)

where k = ω
√
µε˜, since k · k = k2 = ω2µε˜ is still true.

Faraday’s law gives rise to

H =
k×E

ωµ
= ŷ

kEx(z)

ωµ
= ŷ

√
ε

µ̃
Ex(z) (8.1.7)

where k vector is defined shortly after (8.1.5) above, and k = ω
√
µε˜, a complex number. It

is seen that H = ŷHy, and that

Ex/Hy =

√
µ

ε˜ (8.1.8)

8.1.1 Highly Conductive Case

When the medium is highly conductive, σ →∞, and ε˜= ε−j σω ≈ −j
σ
ω . In other words, when

| σω | � ε, the conduction current dominates over displacement current. Thus, the following
approximation can be made, namely,

k = ω
√
µε˜' ω

√
−µjσ

ω
=
√
−jωµσ (8.1.9)
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Taking
√
−j = 1√

2
(1− j), we have for a highly conductive medium that

k ' (1− j)
√
ωµσ

2
= k′ − jk′′ (8.1.10)

For a plane wave, e−jkz, it then becomes

e−jkz = e−jk
′z−k′′z (8.1.11)

By converting the above phasor back to the time domain, this plane wave decays exponentially
as well as oscillates in the z direction. The reason being that a conductive medium is lossy,
and it absorbs energy from the plane wave. This is similar to resistive loss we see in the
resistive circuit. The penetration depth of this wave is then

δ =
1

k′′
=

√
2

ωµσ
(8.1.12)

This distance δ, the penetration depth, is called the skin depth of a plane wave propagating
in a highly lossy conductive medium where conduction current dominates over displacement
current, or that σ � ωε. This happens for radio wave propagating in the saline solution of
the ocean, the Earth, or wave propagating in highly conductive metal, like your induction
cooker.

8.1.2 Lowly Conductive Case

When the conductivity is low, namely, when the displacement current is larger than the
conduction current, then σ

ωε � 1, we have

k = ω

√
µ
(
ε− j σ

ω

)
= ω

√
µε

(
1− jσ

ωε

)
≈ ω√µε

(
1− j 1

2

σ

ωε

)
= k′ − jk′′ (8.1.13)

The above is the approximation to k = k′ − jk′′ for a low conductivity medium where
conduction current is much smaller than displacement current.1 The term σ

ωε is called the
loss tangent of a lossy medium. It is the ratio of the conduction current to the displacement
current in a lossy conductive medium.

In general, in a lossy medium ε = ε′ − jε′′, and ε′′/ε′ is called the loss tangent of the
medium. It is to be noted that in the optics and physics community, e−iωt time convention
is preferred. In that case, we need to do the switch j → −i, and a loss medium is denoted by
ε = ε′ + iε′′.

1We have made use of the approximation that (1 + x)n ≈ 1 + nx when x is small, which can be justified
by Taylor series expansion.
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8.2 Lorentz Force Law

The Lorentz force law is the generalization of the Coulomb’s law for forces between two
charges. Lorentz force law includes the presence of a magnetic field. It is given by

F = qE + qv ×B (8.2.1)

The first term on the right-hand side is the electric force similar to the statement of Coulomb’s
law, while the second term is the magnetic force called the v×B force. This law can be also
written in terms of the force density f which is the force on the charge density, instead of
force on a single charge. By so doing, we arrive at

f = %E + %v ×B = %E + J×B (8.2.2)

where % is the charge density, and one can identified the current J = %v.
Lorentz force law can also be derived from the integral form of Faraday’s law, if one

assumes that the law is applied to a moving loop intercepting a magnetic flux [66]. In other
words, Lorentz force law and Faraday’s law are commensurate with each other.

8.3 Drude-Lorentz-Sommerfeld Model

In the previous lecture, we have seen how loss can be introduced by having a conduction
current flowing in a medium. Now that we have learnt the versatility of the frequency domain
method and phasor technique, other loss mechanism can be easily introduced.

First, let us look at the simple constitutive relation where

D = ε0E + P (8.3.1)

We have a simple model where

P = ε0χE (8.3.2)

where χ is the electric susceptibility. To see how χ(ω) can be derived, we will study the
Drude-Lorentz-Sommerfeld model. This is usually just known as the Drude model or the
Lorentz model in many textbooks although Sommerfeld also contributed to it. These models,
the Drude and Lorentz models, can be unified in one equation as shall be shown.

Figure 8.1: Polarization of an atom in the presence of an electric field. Here, it is assumed
that the electron is weakly bound or unbound to the nucleus of the atom.
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8.3.1 Cold Collisionless Plasma Medium

We can first start with a simple electron driven by an electric field E in the absence of a
magnetic field B.2 If the electron is free to move, then the force acting on it, from the
Lorentz force law, is just −eE where q = −e is the charge of the electron (see Figure 8.1).
Then from Newton’s law, assuming a one dimensional case, it follows that

me
d2x

dt2
= −eE (8.3.3)

where the left-hand side is due to the inertial force of the mass of the electron, and the
right-hand side is the electric force acting on a charge of −e coulomb. Here, we assume that
E points in the x-direction, and we neglect the vector nature of the electric field or that we
assume that both x and E are in the same direction. Writing the above in the frequency
domain for time-harmonic fields, and using phasor technique, one gets

−ω2mex = −eE (8.3.4)

The above implies that the inertial force of the electron, given by −ω2mex, is of the same
polarity as the electric field force on the electron which is −eE. From this, we have

x =
e

ω2me
E (8.3.5)

implying that the displacement x is linearly proportional to the electric field amplitude E, or
they are in phase. This, for instance, can happen in a plasma medium where the atoms are
ionized, and the electrons are free to roam [67]. Hence, we assume that the positive ions are
more massive, sluggish, and move very little compared to the electrons when an electric field
is applied.

The dipole moment formed by the displaced electron away from the ion due to the electric
field is then

p = −ex = − e2

ω2me
E (8.3.6)

for one electron. When there are N electrons per unit volume, the dipole moment density is
then given by

P = Np = − Ne2

ω2me
E (8.3.7)

In general, P and E point in the opposite directions, and we can write

P = − Ne2

ω2me
E = −ωp

2

ω2
ε0E (8.3.8)

2Even if B 6= 0, the v ×B force is small if the velocity of the electron is much smaller than the speed of
light.
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where we have defined ωp
2 = Ne2/(meε0). Then,

D = ε0E + P = ε0

(
1− ωp

2

ω2

)
E (8.3.9)

In this manner, we see that the effective permittivity is

ε(ω) = ε0

(
1− ωp

2

ω2

)
(8.3.10)

What the above math is saying is that the electric field E induces a dipole moment density
P that is negative to ε0E, or the vacuum part of the contribution to D. This negative dipole
density cancels the contribution to the electric flux from the vacuum ε0E. For low frequency,
the effective permittivity is negative, disallowing the propagation of a wave as we shall see.

Hence, ε < 0 if

ω < ωp =
√
N/(meε0)e

Here, ωp is the plasma frequency. Since k = ω
√
µε, if ε is negative, k = −jα becomes pure

imaginary, and a wave such as e−jkz decays exponentially as e−αz. This is also known as an
evanescent wave. In other words, the wave cannot propagate through such a medium: Our
ionosphere is such a medium. The plasma shields out electromagnetic waves that are below
the plasma frequency ωp.

Therefore, it was extremely fortuitous that Marconi, in 1901, was able to send a radio
signal from Cornwall, England, to Newfoundland, Canada. Nay sayers thought his experiment
would never succeed as the radio signal would propagate to outer space and never to return.
Fortunately so, it is the presence of the ionosphere that bounces the radio wave back to Earth,
making his experiment a resounding success and a very historic one! Serendipity occurs in
science and technology development more than once: the experiment also heralds in the age
of wireless communications.

This experiment also stirred interests into research on the ionosphere. It was an area again
where Oliver Heaviside made contributions; as a result, a layer of the ionosphere is named
Heaviside layer or Kennelly-Heaviside layer [68]. If you listen carefully to the broadway
musical “Cats” by Andrew Lloyd Weber, there is a mention about the Heaviside layer in one
of the verses!

Figure 8.2: The electron is bound to the ion by an attractive force. This can be approximately
modeled by a spring providing a restoring force to the electron.
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8.3.2 Bound Electron Case

The above model can be generalized to the case where the electron is bound to the ion, but
the ion now provides a restoring force similar to that of a spring (see Figure 8.2), namely,

me
d2x

dt2
+ κx = −eE (8.3.11)

We assume that the ion provides a restoring force just like Hooke’s law. Again, for a time-
harmonic field, (8.3.11) can be solved easily in the frequency domain to yield

x =
e

(ω2me − κ)
E =

e

(ω2 − ω0
2)me

E (8.3.12)

where we have defined ω0
2me = κ. The above is the typical solution of a lossless harmonic

oscillator (pendulum) driven by an external force, in this case the electric field. The dipole
moment due to an electric field then is

p = −ex = − e2

(ω2 − ω0
2)me

E (8.3.13)

Therefore, when the frequency is low or ω = 0, this dipole moment is of the same polarity as
the applied electric field E, contributing to a positive dipole moment. It contributes positively
to the displacement flux D via P.

8.3.3 Damping or Dissipation Case

Equation (8.3.11) can be generalized to the case when frictional, damping, or dissipation
forces are present, or that

me
d2x

dt2
+meΓ

dx

dt
+ κx = −eE (8.3.14)

The second term on the left-hand side is a force that is proportional to the velocity dx/dt of
the electron. This is the hall-mark of frictional force. Frictional force is due to the collision
of the electrons with the background ions or lattice. It is proportional to the destruction (or
change) of momentum (me

dx
dt ) of an electron. In the average sense, the destruction of the

momentum is given by the product of the collision frequency and the momentum. In the
above, Γ has the unit of frequency, and for plasma, and conductor, it can be regarded as a
collision frequency.

Solving the above in the frequency domain, one gets

x =
e

(ω2 − jωΓ− ω0
2)me

E (8.3.15)

Following the same procedure in arriving at (8.3.7), we get

P =
−Ne2

(ω2 − jωΓ− ω0
2)me

E (8.3.16)
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In this, one can identify that

χ(ω) =
−Ne2

(ω2 − jωΓ− ω0
2)meε0

= − ωp
2

ω2 − jωΓ− ω0
2

(8.3.17)

where ωp is as defined before. A function with the above frequency dependence is also called
a Lorentzian function. It is the hallmark of a damped harmonic oscillator.

If Γ = 0, then when ω = ω0, one sees an infinite resonance peak exhibited by the DLS
model. But in the real world, Γ 6= 0, and when Γ is small, but ω ≈ ω0, then the peak value
of χ is

χ ≈ +
ωp

2

jωΓ
= −j ωp

2

ωΓ
(8.3.18)

χ exhibits a large negative imaginary part, the hallmark of a dissipative medium, as in the
conducting medium we have previously studied.

8.3.4 Broad Applicability of Drude-Lorentz-Sommerfeld Model

The DLS model is a wonderful model because it can capture phenomenologically the essence
of the physics of many electromagnetic media, even though it is a purely classical model.3 It
captures the resonance behavior of an atom absorbing energy from light excitation. When
the light wave comes in at the correct frequency, it will excite electronic transition within an
atom which can be approximately modeled as a resonator with behavior similar to that of a
pendulum oscillator. This electronic resonances will be radiationally damped [34],4 and the
damped oscillation can be modeled by Γ 6= 0. By picking a mixture of multi-species DLS
oscillators, almost any shape of absorption spectra can be curve-fitted [69] (see Figure 8.3).

3What we mean here is that only Newton’s law has been used, and no quantum theory as yet.
4The oscillator radiates as it oscillates, and hence, loses energy to its environment. This causes the decay

of the oscillation, just as a damped LC tank circuit losing energy to the resistor.
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Figure 8.3: A Lorentzian has almost a bell-shape curve. By assuming multi-species of DLS
oscillators in a medium, one can fit absorption spectra of almost any shape (courtesy of
Wikipedia [69]).

Moreover, the above model can also be used to model molecular vibrations. In this case,
the mass of the electron will be replaced by the mass of the atom involved. The damping of
the molecular vibration is caused by the hindered vibration of the molecule due to interaction
with other molecules [70]. The hindered rotation or vibration of water molecules when excited
by microwave is the source of heat in microwave heating.

In the case of plasma, Γ 6= 0 represents the collision frequency between the free electrons
and the ions, giving rise to loss. In the case of a conductor, Γ represents the collision frequency
between the conduction electrons in the conduction band with the lattice of the material.5

Also, if there is no restoring force, then ω0 = 0. This is true for sea of electron moving in the
conduction band of a medium. Besides, for sufficiently low frequency, the inertial force can
be ignored. Thus, from (8.3.17), again we have6

χ ≈ −j ωp
2

ωΓ
(8.3.19)

and

ε = ε0(1 + χ) = ε0

(
1− j ωp

2

ωΓ

)
(8.3.20)

We recall that for a conductive medium, we define a complex permittivity to be

ε = ε0

(
1− j σ

ωε0

)
(8.3.21)

5It is to be noted that electron has a different effective mass in a crystal lattice [71, 72], and hence, the
electron mass has to be changed accordingly in the DLS model.

6This equation is similar to (8.3.18). In both cases, collision force dominates in the equation of motion
(8.3.14).
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Comparing (8.3.20) and (8.3.21), we see that

σ = ε0
ωp

2

Γ
(8.3.22)

The above formula for conductivity can be arrived at using collision frequency argument as
is done in some textbooks [73].

As such, the DLS model is quite powerful: it can be used to explain a wide range of
phenomena from very low frequency to optical frequency. The fact that ε < 0 can be used to
explain many phenomena. The ionosphere is essentially a plasma medium described by

ε = ε0

(
1− ωp

2

ω2

)
(8.3.23)

with ω0 = Γ = 0 called a cold collisionless plasma. Radio wave or microwave can only
penetrate through this ionosphere when ω > ωp, so that ε > 0. The electrons in many
conductive materials can be modeled as a sea of free electrons moving about quite freely with
an effective mass . As such, they behave like a plasma medium as shall be seen.

8.3.5 Frequency Dispersive Media

The DLS model shows that, except for vacuum, all media are frequency dispersive. It is
prudent to digress to discuss more on the physical meaning of a frequency dispersive medium.
The relationship between electric flux and electric field, in the frequency domain, still follows
the formula

D(ω) = ε(ω)E(ω) (8.3.24)

When the effective permittivity, ε(ω), is a function of frequency, it implies that the above
relationship in the time domain is via convolution, viz.,

D(t) = ε(t)~E(t) (8.3.25)

Since the above represents a linear time-invariant (LTI) system [52], it implies that an input
is not followed by an instantaneous output. In other words, there is a delay between the
input and the output. The reason is because an electron has a mass, and it cannot respond
immediately to an applied force: or it has inertial. (In other words, the system has memory
of what it was before when you try to move it.)

Even though the effective permittivity ε is a function of frequency, the frequency domain
analysis we have done for a plane wave propagating in a dispersive medium still applies.
For a mono-chromatic signal, it will have a velocity, called the phase velocity, given by
v = 1/

√
µ0ε. Here, it also implies that different frequency components will propagate with

different phase velocities through such a medium. Hence, a narrow pulse will spread in its
width because different frequency components are not in phase after a short distance of travel.

Also, the Lorentzian function is great for data fitting, as many experimentally observed
resonances have finite Q and a line width. The Lorentzian function models that well. If
multiple resonances occur in a medium or an atom, then multi-species DLS model can be
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used. It is now clear that all media have to be frequency dispersive because of the finite mass
of the electron and the inertial it has. In other words, there is no instantaneous response in
a dielectric medium due to the finiteness of the electron mass.

Even at optical frequency, many metals, which has a sea of freely moving electrons in the
conduction band, can be modeled approximately as a plasma. A metal consists of a sea of
electrons in the conduction band which are not tightly bound to the ions or the lattice. Also,
in optics, the inertial force due to the finiteness of the electron mass (in this case effective
mass , see Figure 8.4) can be sizeable compared to other forces. Then, ω0 � ω or that the
restoring force is much smaller than the inertial force, in (8.3.17), and if Γ is small, χ(ω)
resembles that of a plasma, and ε of a metal can be negative.

Figure 8.4: Effective masses of electron in different metals.

8.3.6 Plasmonic Nanoparticles

When a plasmonic nanoparticle made of gold is excited by light, its response is given by (see
homework assignment)

ΦR = E0
a3 cos θ

r2

εs − ε0

εs + 2ε0
(8.3.26)

In a plasma, εs can be negative, and thus, at certain frequency, if εs = −2ε0, then ΦR →∞.
Gold or silver with a sea of electrons, behaves like a plasma at optical frequencies, since the
inertial force in the DLS model is quite large.7 Therefore, when light interacts with such a
particle, it can sparkle brighter than normal. This reminds us of the saying “All that glitters
is not gold!” even though this saying has a different intended meaning.

Ancient Romans apparently knew about the potent effect of using gold and silver nanopar-
ticles to enhance the reflection of light. These nanoparticles were impregnated in the glass
or lacquer ware. By impregnating these particles in different media, the color of light will
sparkle at different frequencies, and hence, the color of the glass emulsion can be changed
(see website [74]).

7In this case, ω2 � ω2
0 , and ω2 � ωΓ; the binding force and the collision force can be ignored similar to a

cold plasma.
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Figure 8.5: Ancient Roman goblets whose laquer coating glisten better due to the presence
of gold nanoparticles. Gold or silver at optical frequencies behaves like plasma (courtesy of
Smithsonian.com).


